

Pergamon Tetrahedron Letters 42 (2001) 5783–5787

TETRAHEDRON LETTERS

Convergent synthesis of the ABC-ring moiety of zoanthenol: intramolecular Mizoroki–Heck reaction

Go Hirai, Hiroki Oguri, Sameh M. Moharram, Koji Koyama and Masahiro Hirama*

Department of Chemistry, *Graduate School of Science*, *Tohoku University*, *and CREST*, *Japan Science and Technology Corporation* (*JST*), *Sendai* 980-8578, *Japan*

Received 9 May 2001; accepted 21 June 2001

Abstract—The highly congested ABC-ring moiety of zoanthenol was stereoselectively synthesized via an alkoxylithium-mediated coupling between the A-ring and C-ring moieties followed by a Mizoroki–Heck-type ring closure. © 2001 Elsevier Science Ltd. All rights reserved.

Zoanthamine alkaloids, which are isolated from the marine zoanthid *Zoanthus sp*., have densely functionalized heptacyclic structures and interesting biological activities. Zoanthamine (**1**) exhibits inhibitory activity towards phorbol myristate-induced inflammation, while norzoanthamine (**2**) suppresses the decrease in bone weight and strength in overiectomized mice without serious side effects.² Norte and co-workers recently reported zoanthenol (**3**), which possesses an aromatized A-ring, as a new member of this family.³ The unique structural topologies and biological activities of these alkaloids have attracted increasing attention among synthetic chemists.^{4,5} Notably, the groups of Tanner^{5a}

and Williams^{5d} have reported synthetic approaches to the AB(C)-ring skeleton of zoanthamines via intramolecular Diels–Alder reactions.

A critical problem in the total synthesis of the zoanthamines is the stereo-controlled construction of the three consecutive quaternary carbon centers (C9, C12 and C22) in the C-ring. A strategy to incorporate the angular methyl groups at C9 and C22 has been developed.4a However, the quaternary ring junction at C12 remained to be constructed; our retrosynthetic analysis is outlined in Scheme 1.6 We envisioned that an intramolecular Mizoroki–Heck cyclization7 of **7** in a

Scheme 1.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: $S0040 - 4039(01)01110 - 8$

^{*} Corresponding author. E-mail: hirama@ykbsc.chem.tohoku.ac.jp

Norzoanthamine: $2 (R = H)$ Zoanthamine: $1 (R = Me)$ Zoanthenol: **3**

6-exo manner could afford the enol ether (**5**), which would be transformed into the ABC-ring moiety (**4**). To conduct this ring closure from the β -face of the tri-substituted olefin with *syn* palladium hydride elimination from **6**, the stereogenic centers at C21 and C10 of **7** must be controlled. The key precursor (**7**) would be synthesized by combining the A-ring (**8**) and C-ring moieties (**9**). In this paper, we describe a convergent and stereoselective synthesis of the ABC-ring moiety (**4**) of **3** based on a Mizoroki–Heck type ring closure.

The synthesis of the C-ring began with **10** which possesses the C22 angular methyl group, and which was readily available from 2,6-dimethylphenol as reported earlier (Scheme 2).^{4a} The enone (10) was reduced with DIBAL-H diastereoselectively to give diol (**11**). Selective protection of the C10 alcohol as its *t*butyldiphenylsilyl (TBPS) ether and subsequent oxidation of the C21 alcohol yielded enone (**12**).

We then synthesized the A-ring moiety as shown in Scheme 3. Commercially available orcinol (**14**) was converted to aldehyde (15) via protection, allylation⁸ and oxidation. Addition of tributylstannyllithium to **15** followed by protection gave α -alkoxystannane⁹ (16) in good yield. The α -alkoxylithium species generated from **16** reacted with **12** from the β -face^{10,11} in a highly stereo-controlled manner to give the adduct (**17**) as an inseparable C20 diastereomeric mixture $(2:1).$ ¹² How-

Scheme 2. *Reagents and conditions*: (a) DIBAL-H, THF, −78°C, 84% (6:1); (b) TBPSCI, imidazole, DMF, rt; (c) Dess–Martin periodinane, CH₂Cl₂, rt, 99% (2 steps); (d) TBAF, THF, reflux, 98%; (e) MOMCl, *i*-Pr₂NEt, (CH₂Cl)₂, 50°C, 87%.

Scheme 3. *Reagents and conditions:* (a) MOMCl, i -Pr₂NEt, CH₂Cl₂, 0°C, 61%; (b) PMBMCl, i -Pr₂NEt, CH₂Cl₂, rt, 79%; (c) *n*-BuLi, hexane, 0°C then allyl bromide, rt, 62%; (d) OsO₄, NMO, *t*-BuOH–H₂O (1:1), 89%; (e) NaIO₄, THF–H₂O (1:1), 80%; (f) Bu₃SnLi, THF, −78°C; (g) MOMCl, *i*-Pr₂NEt, CH₂Cl₂, 0°C, 84% (2 steps); (h) *n*-BuLi, 12 (13 equiv.), THF, −78°C, 82% (2:1); (i) DDQ, CH₂Cl₂–H₂O (10:1), 62%; (j) Tf₂O, Et₃N, CH₂Cl₂, -78°C, 85%; (k) CH₂=CHCO₂t-Bu, Pd₂(dba)₃ (10 mol%), dppb (40 mol%), KOAc, DMAc, 100°C, 56%.

ever, Mizoroki–Heck reaction of triflate (**18**) did not proceed and the major product was the reduced product (**21**) under various internal cyclization conditions. We reasoned that the cyclization of its Pd(II) intermediate (**19**) was prevented sterically by the neighboring TBPS ether group,¹³ as substantiated by the formation of an intermolecular adduct (**22**) when the reaction was conducted in the presence of *t*-butyl acrylate.

Thus, the C10 alcohol was protected by the lessdemanding MOM group (**13**) (Scheme 2). The ketone (**13**) was coupled with **16** to afford a separable 2:1 mixture of **23** and **24** (Scheme 4). The major diastereomer (**23**) was subsequently converted into triflate (**25**). An intramolecular Mizoroki–Heck reaction of **25** proceeded using $Pd_2(dba)$ ₃-dppb as the catalyst system.14,15 Optimized conditions are listed in Table 1. More than 20 mol% of $Pd_2(dba)$ ₃-dppb appeared necessary to realize this reaction in an appreciable yield, because a hydrolyzed product (**27**) was otherwise produced (Entry 3). An optimal yield of 28 (43%) was attained in the presence of 1,2,2,6,6pentamethyl piperidine $(PMP)^{16}$ instead of KOAc, which suppressed the formation of the reduction product $(\frac{26}{9})$ (Entry 4).^{17,18} The stereochemistry of 28 was unambiguously determined by NOE experiments. Finally, the enol ether (**28**) ¹⁹ was hydrolyzed to afford the targeted ABC-ring moiety (**4**).

In conclusion, the key intermediate (**25**) was synthesized via a stereo-controlled coupling reaction between the A-ring (**16**) and C-ring (**13**) segments. The subsequent intramolecular Mizoroki–Heck reaction of **25** constructed the B-ring and simultaneously introduced the C12 quaternary center of **28**. The convergent synthetic route presented herein offers an efficient strategy for the total synthesis of **3** and further synthetic efforts in this direction will be reported in due course.

Scheme 4. *Reagents and conditions*: (a) *n*-BuLi, THF, −78°C, **23** (58%), **24** (32%); (b) lithium(di-*t*-butylbiphenyl), THF, −78°C, 90%; (c) Tf₂O, Et₃N, CH₂Cl₂, -78° C, 85%; (d) 1 N HCl aq., THF, rt, 89%.

Entry	Pd complex (equiv.)	Base (equiv.)	Yield of 28 $\frac{\%}{\%}$	Yields of products $(\%)$
	$Pd(OAc)$, (0.5) – PPh ₃ (2)	KOAc(10)	20	26(7)
	$Pd_2(dba)_3$ (0.25)-dppb (1)	KOAc(10)	33	26(33)
	Pd_2 (dba) ₃ (0.1)–dppb (0.4)	KOAc(10)	15	26 (15), 27 (30)
4	$Pd_2(dba)$ ₃ (0.25) -dppb (1)	PMP (5)	43	26 (trace)

Table 1. Intramolecular Mizoroki–Heck reaction of **25**^a

^a Carried out in *N*,*N*-dimethylacetamide (DMAc) at 120°C for 2 days in a sealed tube.

Scheme 5. Selected data for 31 (major diastereomer at C20): ¹H-NMR (500 MHz, CDCl₃) δ 7.71 (4H, m, TBPS), 7.42 (6H, m, TBPS), 7.09 (1H, t, J=8.5 Hz, Ar), 6.48 (2H, d, J=8.5 Hz, Ar), 6.08 (1H, br, 7-H), 5.93 (1H, dd, J=9.5, 1.5 Hz, 8-H), 5.39 (1H, d, $J=1.5$ Hz, 11-H), 4.72 (1H, br, 10-H), 4.37 (1H, d, $J=6.5$ Hz, MOM), 4.25 (1H, d, $J=6.5$ Hz, MOM), 4.19-4.14 (2H, m, 20-H, 24-H), 3.75 (6H, s, OMe), 3.06 (1H, dd, J = 14, 12 Hz, 19-H), 2.70 (3H, s, MOM), 2.36–2.28 (3H, m, 9-H, 19-H, 23-H), 1.96 (3H, s, 12-CH₃), 1.52 (1H, d, J = 10 Hz, 23-H), 1.33 (3H, s, 22-CH₃), 1.12 (9H, s, TBPS).; MALDI-TOF MS Calcd for C₄₀H₅₀NaO₆Si (M+Na) 677.3275, Found 677.3496.

Acknowledgements

Fellowships to G.H. and S.M.M. from the Japanese Society for the Promotion of Science are gratefully acknowledged. This study was supported financially in part by Suntory Institute for Bioorganic Research.

References

- 1. (a) Rao, C. B.; Anjaneyula, A. S. R.; Sarma, N. S.; Venkateswarlu, Y.; Rosser, R. M.; Faulkner, D. J.; Chen, M. H. M.; Clardy, J. J. Am. Chem. Soc. 1984, 106, 7983; (b) Rao, C. B.; Anjaneyula, A. S. R.; Sarma, N. S.; Venkateswarlu, Y.; Rosser, R. M.; Faulkner, D. J. J. Org. Chem. 1985, 50, 3757; (c) Rao, C. B.; Rao, D. V.; Raju, V. S. N.; Raju, B. W.; Sullivan, B. W.; Faulkner, D. J. Heterocycles 1989, 28, 103; (d) Rahman, A.-U.; Alvi, K. A.; Abbas, S. A.; Choudhary, M. I.; Clardy, J. Tetrahedron Lett. 1989, 30, 6825; (e) Nakamura, H.; Kawase, Y.; Maruyama, K.; Murai, A. Bull. Chem. Soc. Jpn. 1998, 71, 781; (f) Deranas, A. H.; Fernández, J. J.; Gavín, J. A.; Norte, M. Tetrahedron 1998, 54, 7891.
- 2. (a) Fukuzawa, S.; Hayashi, Y.; Uemura, D.; Nagatsu, A.; Yamada, K.; Ijuin, Y. Heterocycl. Commun. 1995, 1, 207; (b) Kuramoto, M.; Hayashi, K.; Fujitani, Y.; Yamaguchi, K.; Tsuji, T.; Yamada, K.; Ijuin, Y.; Uemera, D. Tetrahedron Lett. 1997, 38, 5683; (c) Kuramoto, M.; Hayashi, K.; Yamaguchi, K.; Yada, M.; Tsuji, T.; Uemera, D. Bull. Chem. Soc. Jpn. 1998, 71, 771.
- 3. Deranas, A. H.; Fernández, J. J.; Gavín, J. A.; Norte, M. Tetrahedron 1999, 55, 5539.
- 4. (a) Hirai, G.; Oguri, H.; Hirama, M. Chem. Lett. 1999, 141; (b) Moharram, S. M.; Hirai, G.; Koyama, K.; Oguri, H.; Hirama, M. Tetrahedron Lett. 2000, 41, 6669.
- 5. (a) Tanner, D.; Anderson, P. G.; Tedenborg, L.; Somfai, P. Tetrahedron 1994, 50, 9135; (b) Tanner, D.; Tedenborg, L.; Somfai, P. Acta Chem. Scand. 1997, 51, 1217; (c) Williams, D. R.; Cortez, G. S. Tetrahedron Lett. 1998, 39, 2675; (d) Williams, D. R.; Cortez, G. S. Org. Lett. 2000, 2, 1023; (e) Hikage, N.; Furukawa, H.; Takao, K.; Kobayashi, S. Tetrahedron Lett. 1998, 39, 6237; (f) Hikage, N.; Furukawa, H.; Takao, K.; Kobayashi, S. Tetrahedron

Lett. 1998, 39, 6241; (g) Hikage, N.; Furukawa, H.; Takao, K.; Kobayashi, S. Chem. Pharm. Bull. 2000, 48, 1370.

- 6. In this paper, carbon numbers correspond to zoanthenol (3) , see Ref. 3.
- 7. (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. **1971**, 44, 581; (b) Heck, R. F.; Nolley, J. P. *J. Org. Chem.* 1972, 37, 2320; (c) Excellent reviews, see: Tsuji, J. Palladium Reagents and Catalysts. Innovations in Organic Synthesis; Wiley: New York, 1995; (d) Link, J. T.; Overman, L. E. In Metal-catalyzed Cross Coupling Reactions; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998 Chapter 6; (e) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379; (f) Shibasaki, M; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371.
- 8. The use of hexane as solvent is important to attain the allylated product in good yield, see: Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004.
- 9. Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481.
- 10. Attack of alkoxylithium species from the β -face was supported by a model reaction as shown in Scheme 5. The ketone (12) was reacted with 29, and the alcohol so formed cyclized quantitatively to form the ether (31) when treated with $Pd(OAc)$. For a similar cyclization of *cis*-decalin derivatives, see: Pratt, D. V.; Hopkins, P. B. J. Org. Chem. 1988, 53, 5885.
- 11. For a stereo-controlled addition to a related enedione system, see: (a) Liotta, D.; Saindane, M.; Jamison, U. S. W. C. L.; Grossman, J.; Phillips, P. J. Org. Chem. 1985, 50, 3241;
- (b) Liu, C.; Burnell, D. J. J. Org. Chem. 1997, 62, 3683. 12. Arseniyadis, S.; Hernando, J. I. M.; del Moral, J. Q.;
- Yashunsky, D. V.; Potier, P. Synlett 1998, 1010.
- 13. Rigby, J. H.; Deur, C.; Heeg, M. J. Tetrahedron Lett. 1999, 40, 6887.
- 14. Reactions using other ligands [including PPh₃, 1,3-bis- $(diphenylphosphino)$ propane $(dppp)$, 1,2-bis $(diphenyl$ phosphino)ethane (dppe), 1,5-bis(diphenyphosphino)pentane, 1,1'-bis(diphenylphosphino)ferrocene (dppf)] provided only small amounts of product (28) and larger amounts of the reduced product (26).
- 15. (a) Laschat, S.; Narjes, F.; Overman, L. E. Tetrahedron 1994, 50, 347; (b) Overman, L. E.; Rucker, P. V. Tetrahedron Lett. 1998, 39, 4643; (c) Hynes, J.; Overman, L. E.; Nasser, T.; Rucker, P. V. Tetrahedron Lett. 1998, 39, 4647.
- 16. For the use of PMP in the Mizoroki–Heck reaction, see; Overman, L. E. *Pure Appl*. *Chem*. **1994**, 66, 1423 and references cited therein.
- 17. Cabri, W.; Candiani, I.; DeBernardinis, S.; Francalanci, F.; Penco, S. *J*. *Org*. *Chem*. **1991**, 56, 5796.
- 18. Addition of LiCl¹⁶ did not suppress the formation of **27**.
- 19. Data for 28: ¹H-NMR (500MHz, CDCl₃) δ 6.89 (1H, s, 14-H), 6.73 (1H, s, 16-H), 5.81 (1H, m, 7-H), 5.66 (1H, m, 24-H), 5.16 (2H, s, MOM), 5.10 (1H, d, *J*=6.5 Hz, MOM), 5.05 (1H, d, *J*=6.5 Hz, MOM), 5.03 (1H, s, 11-H), 4.94 (1H, d, *J*=7 Hz, MOM), 4.81 (1H, d, *J*=7 Hz, MOM), 3.94 (1H, dd, *J*=8, 6 Hz, 20-H), 3.62 (1H, s, OH), 3.49 (3H, s, MOM), 3.47 (1H, dd, *J*=16, 6 Hz, 19-H-), 3.47 (3H, s, MOM), 3.47 (3H, s, MOM), 2.76

(1H, dd, $J=16$, 8 Hz, 19-H α), 2.65 (1H, m, 23-H), 2.50 (1H, m, 8-H), 2.39 (1H, m, 8-H), 2.29 (3H, s, 15-CH3), 2.04 (1H, dd, *J*=9.5, 6 Hz, 9-H), 1.77 (1H, m, 23-H), 1.37 (3H, s, 12-CH₃), 0.60 (3H, s, 22-CH₃); ¹³C-NMR $(125MHz, CDCl₃)$ δ 153.9 (C17), 152.3 (C10), 147.7 (C13), 136.9 (C15), 127.5 (C24), 125.5 (C7), 119.4 (C18), 118.9 (C16), 112.5 (C14), 104.9 (C11), 95.7 (MOM), 94.9 (MOM), 93.4 (MOM), 77.7 (C21), 74.9 (C20), 56.4 (MOM), 56.1 (MOM), 55.7 (MOM), 45.4 (C12), 43.7 (C9), 41.2 (C22), 33.5 (C23), 29.5 (C8), 27.9 (C22-CH3), 27.4 (C12-CH₃), 26.5 (C19), 21.9 (C15-CH₃); FT-IR (film) - 3529, 2927, 1686, 1610, 1584, 1465, 1377, 1286, 1217, 1151, 1027, 922, 846, 772 cm⁻¹; MALDI-TOF-MS Calcd for $C_{27}H_{38}NaO_7$ (M+Na) 497.252, Found 497.253.